New Gallium Germanates with Tunnel Structures: α -Ga₄GeO₈ and Ga₄Ge₃O₁₂

A. KAHN, V. AGAFONOV, D. MICHEL, AND M. PEREZ Y JORBA

Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS UA302 C. E. C. M. 15, rue Georges Urbain 94407, Vitry, France

Received January 22, 1986; in revised form April 17, 1986

The structure of several gallium germanates has been established or confirmed (Ga₄GeO₈ α and β forms, Ga₂GeO₅, Ga₄Ge₃O₁₂). Among them, α -Ga₄GeO₈ exhibits a new type of tunnel structure resulting from an intergrowth of GeO₂ rutile elements in the β -gallia network. Large hexagonal tunnels take place at the junction of both lattices. This compound is the first term of a series having as general formula Ga₄M_{2n-1}O_{4n+4}. Several other compounds M = Ge(n = 1, 2), Ti $(n = 2, 3, 11 \dots)$, and Sn (n = 1) belong to the same family. @ 1986 Academic Press, Inc.

Introduction

In a previous study on trivalent ion germanates, one of us determined the Ga_2O_3 -GeO₂ phase diagram (1). As GeO₂ may adopt either quartz or rutile structure, some of the gallium germanates are isomorphous to silicates and some have new types of structures. Their crystal growth and characterization have been reported recently (2).

Two compounds with Ga_2GeO_5 formula are known and they are isostructural with aluminum silicates having andalusite and mullite structures. Three other phases have been identified but their structures were undetermined up to now due to the lack of single crystals: $Ga_4Ge_3O_{12}$ and two modifications of Ga_4GeO_8 .

Structural data on these compounds are reported in this paper with the complete description of α -Ga₄GeO₈. No homologous compounds exit in the Ga₂O₃-SiO₂ system, but a series of parent phases were observed in the Ga_2O_3 -TiO₂ system (3-9). A general model is proposed for the structure of these gallium germanates and titanates.

Structure of Ga₄GeO₈ Compounds

Two modifications are known for Ga₄GeO₈: the low temperature α -form and the β -form stable at $T \ge 1300$ K (1). Single crystals of both have been prepared from chemical vapor transport (2).

(1) β -Ga₄GeO₈

The X-ray study on a single crystal gave the lattice constants of a monoclinic unit cell with the unique space group $P2_1/c$, Z = 4. An indexed powder diagram of β -Ga₄GeO₈ is given in Table I. A metastable phase with Al₄GeO₈ composition had also been prepared (1). Its X-ray powder pattern can be interpreted with similar lattice constants.

It is likely that these two phases are isostructural with the mixed valence iron ger-

TABLE I Debye-Scherrer Powder Pattern of β -Ga₄GeO₈

	,			
d (Å)	<i>I/I</i> 1	h k l		
5.75	5	011		
5.46	5	110		
3.69	5	$\overline{2}$ 1 1	$\overline{2}$ 0 2	
3.66	90	200		
3.59	10	120		
3.37	10	$\overline{2}$ 1 2		
3.34	1	210		
3.03	80	121		
2.988	5	102		
2.915	5	221		
2.876	20	022		
2.826	20	<u>1</u> 13		
2.807	100	112		
2.734	10	220		
2.716	5	302		
2.582	10	312	_	
2.571	90	311	ī 3 l	
2.368	5	$\overline{2}$ 2 3		
2.352	10	221		
2.337	50	131	310	
2.238	5	202		
2.133	15	113		
2.057	10	040		
2.011	15	004	_	
1.990	10	<u>1</u> 41	$\overline{2}$ 2 4	140
1.6066	5	124	150	
1.4784	15	332	524	
1.4385	50	044		
1.4356	30	4 43		
1.4331	20	402		
1.4300	10	$\overline{2}$ 5 3		

manate $Fe^{II}Fe_2^{II}Ge_2O_8$ the structure of which has been published recently (10) and which possesses the same space group $P2_1/c$ as β -Ga₄GeO₈. Unit-cell parameters for the three compounds are gathered in Table II. The structure refinement of β -Ga₄GeO₈ is now under way.

(2) α -Ga₄GeO₈

(a) Structural determination. This phase crystallizes with a new type of structure that we have completely determined on a single crystal. Experimental crystallographic data are given in Table III.

TABLE II

LATTICE CONSTANTS OF M_5O_8 Compounds
(Space Group $P2_1/c$, $Z = 4$)

Compound	a (Å)	b (Å)	c (Å)	β (°)	V (A ³)
Al4GeO8	8.007(5)	7.926(5)	8.809(5)	117.6(1)	498.6
Ga4GeO8-B	8.258(2)	8.226(2)	9.084(2)	117.63(2)	546.7
Fe ₃ Ge ₂ O ₈ (10)	8.479	8.333	9.196	117.7	575.3

During the preliminary investigation of α -Ga₄GeO₈ crystals, the following relationships between this phase and β -gallia were observed:

$\mathbf{a} = \mathbf{a}'$	a, b, c, unit-cell vectors of
$\mathbf{b} = \mathbf{b}'$	α -Ga ₄ GeO ₈
$a = -\frac{1}{2}a' = \frac{5}{2}a'$	$\mathbf{a}', \mathbf{b}', \mathbf{c}', \text{unit-cell vectors}$
$c\frac{1}{3}a - \frac{1}{3}c$	or p - oa 203

Two parameters are similar, especially the **b** vectors which have a very short length (~3 Å). Among the possible space group C2/m, C2, and Cm, we have first tried to solve the structure in the holohedral space group of β -gallia (11).

TABLE III

Crystallographic and Experimental Data for α -Ga₄GeO₈ Structure Refinement

Crystal size	Needle-shaped crystal $0.03 \times 0.02 \times 0.2$ mm		
Space group	C2/m		
Lattice constants at 295 K	a = 12.169(3) Å		
	$b = 3.005(1)$ Å $\beta = 125.06(2)^{\circ}$		
	c = 9.414(2) Å Z = 2		
Specific gravity	Measured 5.5(1) Mg/m3		
	Theoretical 5.6 Mg/m3		
Experimental conditions	Nonius CAD 3 diffractometer		
	Graphite monochromator		
	λMoK_{α} radiation = 0.7107 Å		
	$\theta/2\theta$ scan $3.5 < \theta < 37.0$		
	$\sin \theta / \lambda < 0.85$		
	$0 \le h \le 15$		
	$0 \leq k \leq 4$		
	$-12 \leq l \leq 12$		
Number of reflections	603 measured		
	565 with $I > 3\sigma(I)$		
Number of parameters	20		
Corrections	Lorentz and polarization effects		
	No absorption corrections		
	$\mu = 90 \text{ cm}^{-1}, \ \mu R < 1$		
Atomic scattering factors	Int. Tables for X-Ray Crystallo- graphy, 1974, Vol. IV (Cromer and Waber's table)		
Refinement factor	R = 0.029		

In the unit cell containing two Ga₄GeO₈ formulas, we have to place 16 anions and 10 M cations. These can be taken as equivalent since Ga³⁺ and Ge⁴⁺ are isoelectronic. Considering the available Wyckoff positions of multiplicity 2, 4, or 8, two of the cations necessarily are in a twofold position. This was confirmed on a Patterson map, together with two fourfold positions for the remaining cations. Then a Fourier map provided the positions of the oxygen atoms. Due to the short **b** axis, all atoms are constrained in two planes of the structure (z = 0 and z = 0.5).

Refinement of the structure using isotropic thermal coefficients rapidly converged to a satisfactory agreement factor R= 0.029. Final atomic parameters are given in Table IV. As previously mentioned, Ga and Ge ions are not discernible by X rays, but the probable distribution of cations on the *M* positions has been drawn from the values of M-O bond lengths (Table V).

Three cationic sites are present in the structure: M_3 is tetrahedral. M_2 and M_1 are octahedral positions. The mean value of M_3 -O distances (1.83 Å) corresponds with no ambiguity to the usual Ga-O distance in a GaO₄ tetrahedron. For a GeO₄ tetrahedron, the Ge-O bond would be shorter (~1.74-1.79 Å). Germanium atoms are so found in octahedral sites only. It is reasonable to assume that Ge atoms are found in

TABLE IV Atomic Parameters and Thermal Factors in α-Ga₄GeO8

Atom	Wyckoff position	x	у	z	B (Å ²)
M(1) = Ge	2a	0	0	0	0.29(2)
$M(2) = \operatorname{Ga}(1)$	4i	0.7576(1)	0	0.3596(1)	0.40(1)
$M(3) = \operatorname{Ga}(2)$	4i	0.4621(1)	0	0.2809(1)	0.38(1)
O(1)	4i	0.1627(5)	0	0.2183(7)	0.53(7)
O(2)	4i	0.6446(5)	0	0.4618(7)	0.49(7)
O(3)	4i	0.4403(6)	0	0.0738(7)	0.65(7)
O(4)	4i	0.8912(6)	0	0.3064(7)	0.65(8)

Note. Estimated standard deviations are given in parentheses.

TABLE V

MAIN INTERATOMIC DISTANCES (IN Angstrom) IN α -Ga₄GeO₈

	-			
Tetrahedral	site			
M(3) - O(3)	1.81	D(8)		
M(3)-O(4)	2×1.81	6(5)		
M(3)-O(2)	1.86	7(4)		
Mean value	≈ 1.8 3	in tetrahedi	$\operatorname{ra} \begin{cases} \operatorname{Ge} - \operatorname{O} = 1.7\\ \operatorname{Ga} - \operatorname{O} = 1.8 \end{cases}$	 4 GeO₂ quartz(12) 2 β-Ga₂O₃(11)
Octahedral	sites			
M(1)-O(1)	2×1.86	2(4)		
M(1)-O(3)	4 × 1.96	0(6)		
Mean value	- 1.93	in octahedr	$a\begin{cases} Ge - O = 1.9\\ Ga - O = 2.0 \end{cases}$	0 GeO ₂ rutile(13) 0 β -Ga ₂ O ₃ (11)
M(2)-O(1)	2 × 1.89	6(3)		
M(2)-O(4)	1.95	6(9)		
M(2)-O(2')	2×2.05	0(3)		
M(2) - O(2)	2.08	3(8)		
Mean value	= 1.99			
Vacant site	in tunnels			
□-0(1)	2.32			
□-O(3)	3 × 2.32			
□-O(4)	2 × 2.59			
□-O(4)	2.68			

the octahedral sites M_1 with smaller size. Gallium atoms are thus in both tetrahedral and octahedral M_2 sites. This defines units made of two tetrahedra plus two octahedra, quite similar to the units of β -gallia.

(b) Description of the structure. A projection of the α -Ga₄GeO₈ structure on the (010) plane is given on Fig. 1. As shown on the corresponding idealized model, the structure consists of β -gallia blocks linked by [010] chains of GeO₆ octahedra. Therefore, α -Ga₄GeO₈ can be described as β -gallia with insertion of rutile chains. This structural analysis confirms the model proposed by Bursill and Stone (7, 9) from a high-resolution electron microscopy study.

The anionic network of α -Ga₄GeO₈ is not close packed as it is in β -Ga₂O₃. It exhibits channels running along the [010] direction. One may consider that these tunnels result from the clustering of oxygen vacancies in (001) planes. As shown on Fig. 2, the idealized anionic sublattice of α -Ga₄GeO₈ can be obtained by the suppression of one every ninth (001) plane in β -Ga₂O₃ and a simulta-

FIG. 1. Projection of the α -Ga₄GeO₈ structure on the (010) plane and the corresponding description in polyhedra.

FIG. 2. Structural relationships between β -gallia and α -Ga₄GeO₈. Circles indicate oxygen positions in (010) planes (full circles, Z = 0; empty circles, Z = 0.5).

neous crystallographic shear with a $[\frac{1}{2}, 0, \frac{1}{2}]$ vector. A double chain (gallium octahedra plus tetrahedra) of β -gallia is substituted by a single chain of germanium octahedra to give the Ga₄GeO₈ composition. A schematic writing for these relations between the two structures would be

$$[Ga_3]_{oct}[Ga_3]_{tet}O_9 \rightarrow [Ga_2Ge]_{oct}[Ga_2]_{tet}O_8\Box$$

Tunnels are limited by four chains of octahedra and two chains of tetrahedra. Their dimensions are quite comparable to that of some tungsten bronzes (14, 15). Bottlenecks in the tunnels are at z = 0.25. Large vacant sites with seven oxygen neighbors are found at z = 0. Comparable sites with the same size (2.3–2.7 Å) and coordination (sevenfold) are occupied by Na⁺ in NaMoPO₆, Ca²⁺ in CaTiSiO₅ (titanite), and Nd³⁺ in A-Nd₂O₃ (16). This channel structure could therefore be convenient for the insertion of middle-sized cations.

Intergrowth between β -Gallia and Rutile

In the Ga₂O₃-TiO₂ system, phases belonging to a series with general formula Ga₄Ti_{2n-1}O_{4n+4} were observed (3-9). For the term n = 11, an X-ray structural determination was performed (6). For others, observations by high-resolution electron microscopy resulted in the same description as ours for α -Ga₄GeO₈, i.e., these phases are built by an intergrowth of β gallia and rutile (5, 9). The (010) plane of β -gallia is parallel to the (001) plane of MO_2 and channels with hexagonal section are spaced along $[103]_{\beta$ -gallia} // [210]_{rutile} at ~10.3 Å.

In the Ga_2O_3 -GeO₂ system, we have also

obtained the term n = 2, Ga₄Ge₃O₁₂, but as powder sample only. Its powder diagram has been indexed with a monoclinic unit cell deriving from α -Ga₄GeO₈ by insertion of more rutile elements. We have also been able to characterize the structure of a previously prepared phase Ga₄SnO₈ (17): it is isomorphous to α -Ga₄GeO₈.

Then, our description of α -Ge₄GeO₈ provides the link for a general pattern of possible intergrowth between β -gallia and rutile structures with formation of hexagonal tunnels. The first term of the series Ga₄M_{2n-1} O_{4n+4} has the structure of α -Ga₄GeO₈ and the last term is MO_2 rutile. According to the composition, β -gallia units are more or less diluted in rutile. Models for ordered phases with space group C2/m, Z = 2 are shown in Fig. 3, including the structure of Ga₄Ti₂₁O₄₈ determined by Lloyd *et al.* (6).

Lattice constants of phases identified in this series are gathered in Table VI. For the terms n = 2, 3, and 5 of titanates, parameters are deduced from values given by Bursill and Stone (9) assuming the structural model proposed in Fig. 3.

FIG. 3. Models for ordered structures $Ga_4M_{2n-1}O_{4n+4}$ with space group C2/m, Z = 2 resulting from intergrowth of rutile and β -gallia. Projection along the two-fold axis ($b \approx 3$ Å).

TABLE VILATTICE CONTANTS OF COMPOUNDS IN THE SERIES $Ga_4M_{2n-1}O_{4n+4}$

n	Compound	a (Å)	b (Å)	c (Å)	β (°)	V (Å3)
11	Ga4Ti21O48	51.80	2.975	10.302	103.8	1541.8
5	Ga ₄ Ti ₉ O ₂₄	25.32	2.96	10.3	90.0	772.0
3	Ga4Ti5O16	17.76	2.96	10.3	103.2	525.8
2	Ga ₄ Ti ₃ O ₁₂	14.16	2.96	10.3	105.2	416.6
2	Ga ₄ Ge ₃ O ₁₂	13.69	2.890	10.09	106.5	382.8
1	Ga ₄ SnO ₈	12.15	3.075	10.49	130.7	297.1
1	Ga ₄ GeO ₈	12.17	3.005	10.25 ^a	131.26	281.8

^{*a*} In order to make easier the comparison with other compounds, the *c* constant given for Ga_4MO_8 compounds corresponds to (a + c) of the standard unit cell.

Conclusion

Among the several compounds of the Ga_2O_3 -GeO₂ system which were obtained as single crystals, the structure of the two modifications of Ga_4GeO_8 are reported. The β -high temperature form is isostructural with Fe₃Ge₂O₈ (10). The α -form is a new structural type belonging, as well as $Ga_4Ge_3O_{12}$, to a general series.

The well-known Magneli phases MO_{2n-1} are a way to pass from MO_2 rutile to M_2O_3 corundum by a (121) crystallographic shear in the rutile structure. The series $Ga_4M_{2n-1}O_{4n+4}$ is another possibility to pass from MO_2 rutile to M_2O_3 by a (210) crystallographic shear and insertion of β -gallia units.

References

- M. PEREZ Y JORBA, Rev. Int. Hautes Temp. Refract. 6, 283 (1969).
- 2. V. AGAFONOV, D. MICHEL, A. KAHN, AND M. PEREZ Y JORBA, J. Cryst. Growth 71, 12 (1985).
- 3. A. LEJUS, D. GOLDBERG, AND A. REVCOLEVSCHI, C.R. Acad. Sci. C 263, 399 (1959).
- 4. R. M. GIBB AND J. S. ANDERSON, J. Solid State Chem. 5, 212 (1972).
- 5. L. A. BURSILL AND G. G. STONE, *Philos. Mag.* 32, 1151 (1975).
- D. J. LLOYD, I. E. GREY, AND L. A. BURSILL, Acta Crystallogr. Sect. B 32, 1756 (1976).
- 7. G. G. STONE, AND L. A. BURSILL, *Philos. Mag.* **35**, 1397 (1977).
- S. KAMIYA AND R. J. D. TILLEY, J. Solid State Chem. 22, 205 (1977).
- 9. L. A. BURSILL AND G. G. STONE, J. Solid State Chem. 38, 149 (1981).
- 10. K. KATO, E. TAKAYAMA, AND N. KIMIZUKA, Acta Crystallogr. Sect. C 39, 148 (1983).
- 11. S. GELLER, J. Chem. Phys. 33, 676 (1960).
- G. S. SMITH AND P. B. ISAACS, Acta Crystallogr. 17, 842 (1964).
- 13. W. H. BAUR, Acta Crystallogr. 19, 793 (1964).
- 14. A. MAGNELI, Acta Chem. Scand. 7, 315 (1953).
- 15. J. P. GIROULT, M. GOREAUD, P. LABBE, AND B. RAVEAU, *Rev. Chim. Miner.* 20, 829 (1983).
- 16. R. W. G. WYCKOFF, "Crystal Structures," Vols. 2 and 3, Interscience, New York (1965).
- M. B. VARFOLOMEEV, A. S. MIRONOV, T. I. DU-DINA, AND N. D. KOLDACHOV, *Zh. Neorg. Khim.* 20, 3140 (1975).